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-AirCore remote sensing

NOAA/GML AirCore over the past decade(s)
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NOAA/GML AirCore Sampling A e L2
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Over a decade of NOAA/GML AirCore sampling with >100 CO,, CH,, CO profiles retrieved from select locations
Routine, near-monthly balloon launches in Colorado: coordinated with A-train overpasses for OCO-2 evaluation

Several small-scale field campaigns since 2018:
Remote sensing evaluation within Total Carbon Column Observing Network (TCCON) : OCO-2, ground-based FTS

inter-comparisons
ICOS RINGO collaboration (Sodankyla, Trainou) — AirCore inter-comparisons, towards a global AirCore network



Satellite trace gas retrieval evaluation using AirCore
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- Satellite trace gas retrievals cannot be calibrated, which lessens compatibility with ground-based observing networks
- Rely on resources like global TCCON, which is scaled to calibrated aircraft and AirCore GHGs traceable to WMO scales
- To-date, 11 AirCores launched coincidentally with OCO-2 overpasses in NE Colorado

- AirCores capture >98% of atmospheric column: less “extrapolation” involved, greater potential error reduction in retrievals by
comparison to AirCore vs. aircraft



Stratospheric modeling efforts and comparison to AirCore
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Stratospheric modeling efforts and comparison to AirCore
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CarbonTracker (CT2019) evaluation of stratospheric CO, using AirCores
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- CarbonTracker is NOAA's CO, inverse modeling framework for mole fraction, flux estimation (Jacobson
et al., 2020; http://www.carbontracker.noaa.gov)

- CT assimilates routine NOAA CCGG Aircraft Network flask CO, measurements to ~12-13 km MSL

- AirCore samples from 2009-2020 extend to ~30km MSL, provide some of the only routine GHG
measurements in UT/LS for model evaluation



New development: measurement of N,O in AirCores
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New development: High-altitude AirCore sampling platform

95,000 ft (30 km)
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« Biggest limitation with balloon-borne AirCore sampling is feasibility of recovery
» Custom design: portable, lightweight, optimized for AirCore and scientific payload
* Revolutionize surface to stratosphere sampling, enhance weather forecasting capabilities, and

further satellite retrieval and algorithm evaluation



Summary

- We have a growing time series of retrieved AirCore profiles since ~2010 in Colorado

- Routine, long-term monitoring of the AirCore is useful tool in evaluating modeled greenhouse gases
in the stratosphere

- As satellite community continues to grow, multiple end users in ground-, satellite-based remote
sensing communities (NOAA CrIS, TROPOMI, MOPITT, A-train constellation, etc.) benefiting from
routine AirCore sampling

- Collaboration between AirCore groups globally is crucial for furthering AirCore technique and
working towards establishing global “AirCore Network”

- The ability to measure new species in AirCore whole-air samples opens up new possibilities for GML
stratospheric observing capabilities

- As does a recoverable platform for high-altitude sampling
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NOAA/GML AirCore Sampling
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- Over a decade of NOAA/GML AirCore sampling with >100 CO,, CH,, CO profiles retrieved from select locations
- Routine, near-monthly balloon launches in Colorado
- Now coordinated with A-train overpasses in NE Colorado for OCO-2 evaluation

- Several small-scale field campaigns since 2018
- Remote sensing evaluation at U.S. TCCON stations: OCO-2, ground-based FTS inter-comparisons
- ICOS RINGO collaboration (Sodankyla, Trainou) — AirCore inter-comparisons, towards a global AirCore network



Satellite trace gas retrleval evaluation
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- Total Carbon Column Observing Network (TCCON) is primary resource for evaluating satellite trace gas retrievals
- NASA’s Orbiting Carbon Observatory relies heavily on TCCON total-column CO,

- BUT ground-, satellite-based total column GHG retrievals cannot be calibrated, lessening compatibility with ground-
based observing networks tied to WMO trace gas scales, and utility for GHG flux estimation




TCCON FTS remote sensing evaluation

» AirCore is low-cost, low effort pathway
to sample over 98% of atmospheric
column

« Spaceborne greenhouse and trace gas
retrievals cannot be calibrated, which
lessens compatibility with long-term,
calibrated ground-based network
observations

» AirCore profiles are calibrated, tied to
WMO scales, which provides a link
between spaceborne observations and
ground-based observing networks
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Mean Age versus N20 and Mean Age versus CH4 relationships are surprisingly
invariant throughout the lower/middle stratosphere:

N20 Corrected for Growth, ppb
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CarbonTracker evaluation of stratospheric CO, using AirCores
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New development: High-altitude AirCore sampling platform

AirCore P4
Logger

» Biggest limitation with balloon-borne AirCores is feasibility of recovery
« Trees, accessibility, water all barriers to [quick] recovery and lab analysis
« Custom design: portable, lightweight, optimizes glide ratio for controlled descent rate (~10 ms-*) for more
efficient AirCore stratospheric sample collection, reduction in meteorological sensor hysteresis



New development: High-altitude AirCore sampling platform
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